SAIDEL Monopile

Drilled Foundations

SAFE. VALUE. ECOLOGIC.

SAIDEL-Monopile = "Simpler is better!"

Replaces the classic foundations for any type of columns.

High-quality, economic and ecologic foundations by saving materials, time and manpower

Classic Foundations

Shallow/pile foundation

- 1. Groundwater lowering
- 2. Excavation and slopes support
- 3. Leveling concrete
- 4. Reinforcement placement
- 5. Manufacturing & installing of precast socket
- 6. Formwork installation
- 7. Concrete pouring and hardening
- 8. Formwork dismantling
- 9. Placing and compacting of fill

SAIDEL Monopile

- 1. Single phase CFA drilling
- 2. Concrete casting
- 3. Reinforcement placement
- 4. Formwork installation
- 5. Formwork dismantling

Monopile Foundation - Construction Phases

Pile Foundation vs. SAIDEL-Monopile

Advantages

- 1. Common method
- 2. Standard design
- 3. Standard equipment

Disadvantages

- 1. Expensive
- 2. Long time 3-5 Found./shift
- 3. High materials consumption
- 4. Labour-intensive
- 5. Weather dependent
- 6. Various earthworks
- 7. Working platform is lost
- 8. Linked construction stages
- 9. Dewatering works needed
- 10. Pile trimming
- 11. Need of prefab. sleeve
- 12. Risk for slab on fill
- 13. No possibility of foundation test
- 14. Boring

Obstacles

- 1. New method
- 2. Special design
- 3. Special equipment

Advantages

- . Cost saving
- 2. Short time 5-10 Found./rig/shift
- 3. Saving of materials -> Ecologic
- 4. Labour-saving
- 5. Weather independent
- 6. No earthworks
- 7. Working platform as slab subgrade
- 8. One construction stage
- 9. No dewatering
- 10. No pile trimming
- 11. Sleeve is part of the Monopile
- 12. No need of fill around foundation
- 13. Eliminated quality risk by foundation load tests
- 14. Cool 🙂

Case Study – Time Savings

Pile Foundation vs.

Construction time [h]	Foundation on Piles	Monopile
Pile construction	1	0.75
Dewatering	0.25	
Excavation	0.5	
Lean concrete	0.5	
Reinforcement	4	
Sleeve installation	0.25	
Formwork installation	1	0.5
Concrete casting	0.25	
Formwork dismounting	0.25	0.25
Earthfill compaction	2	
TOTAL	10	1.5

Double CFA Drilling Tool

Double CFA Site View

Reinforcement, Formwork & Guiding Frame

Reinforcement cages and formwork

Installed socket formwork, including frame

Installation of the socket formwork using guiding frame

SAIDEL-Monopile = Drilled Foundation

Internal View of the Socket

Socket after removal of internal formwork and details of the indentation for optimal columnfoundation coupling by concrete casting

Site Layout – Working Below Freeze Point

3D FEM Design

Real Scale Cyclic Load Test - Test results

The deformed column and detail of bending induced cracks developed at the base of the assembly during cyclic loading test reaching the ultimate bending stage of the prefabricated RC column

Scaled Test – Research & Development

Scaled Test – Plastic Hinge in the Column while Elastic Socket

- C50/60
- 12Ø25+8Ø20 BST500C
- p =1.50%
- stirrups Ø10/120
- N=880kN, $v_{Ed} \approx 0.05$
- H_{column} = 3100mm
- H_{emb} = 1500mm
- Rough interface

- Monopile D1500/800
- C30/37
- D1500mm/D800mm
- H_{emb} = 1600mm
- Rough interface

SAIDEL

ENGINEERING

Real Scale Cyclic-Load Test – Results for ±2.5% Drift

- Cracks in the concrete column: 2...3mm
- No spalling of the column concrete cover
- Small number of visible cracks in the socket
- Crack width in the socket, smaller than 0,4mm

Real Scale Cyclic-Load Test – Results for ±6% Drift

Real Scale Cyclic-Load Test – Results for ±6% Drift

- Maximum column drift > 6%
- Cracks in the concrete column > 3mm
- Failure by buckling of the longitudinal column bars
- Small number of visible cracks in the socket:
- Crack width under 0,4mm for drifts 2,2-2,6%
- Maximum crack width 0,8mm for drift > 6%

Real Scale Cyclic-Load Test – Results for ±6% Drift

References – Design and Build

Projects

- 1. 2018 Prime-Kapital Roman VALUE CENTER 138 Monopiles
 - 2. 2018 Penny Market Lehliu 33 Monopiles
 - 3. 2018 VGP Logistic Center 129 Monopiles
 - 4. 2019 SEFAR & MONOSUISSE Factory in Sighisoara 332 Monopiles
 - 5. 2020 Pioneer Production Hall 50 Monopiles
 - 6. 2021 Kaufland Supermarket in Brasov 82 Monopiles
 - 7. 2021 Kaufland Supermarket in Blaj 56 Monopiles
 - 8. 2021 Moncler Production Hall 77 Monopiles
 - 9. 2021 Kaufland Supermarket in Timisoara 52 Monopiles
 - 10. 2021 CONTINENTAL Production Hall Timisoara 90 Monopiles
 - 11. 2021 LIDL in Bucharest 30 Monopiles
 - 12. 2021 Gebrüder Weiss in Sibiu 25 Monopiles
 - 13. 2021 IKEA in Timisoara 150 Monopiles
 - 14. 2022 Mömax XXXLutz Cluj 60 Monopiles
 - 15. 2022 Kaufland Supermarket in Cernavodă 70 Monopiles
 - 16. 2022 Jumbo Market in Sibiu 2022 70 Monopiles
 - 17. 2022 BOSCH in Blaj 26 Monopiles
 - 18. 2022 Arabesque in Chitila 62 Monopiles
 - 19. 2022 Funshop Retail Park in Vaslui 75 Monopiles
 - 20. 2022 Terminal T4 Iași Aeroport 120 Monopiles (in progress)

Total ~ 1800 Drilled Foundations

References – Design and Build

Partners

SAIDEL-Monopile = Drilled Foundation

Prefbeton 2022

Patent Application

 (12) INTERNATIONAL APPLICATION PUBLISHED U (19) World Intellectual Property Organization International Bureau (43) International Publication Date 15 October 2020 (15.10.2020) WIPO F 	NDER THE PATENT COOPERATION TREATY (PCT)
 (51) International Patent Classification: <i>E02D 5/36</i> (2006.01) <i>E02D 5/48</i> (2006.01) (21) International Application Number: PCT/RO2020/050003 (22) International Filing Date: 08 April 2020 (08.04.2020) (25) Filing Language: Romanian (26) Publication Language: English 	(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
 (30) Priority Data: a 2019 00223 08 April 2019 (08.04.2019) RO (72) Inventor; and (71) Applicant: SAIDEL, Tudor [RO/RO]; str.Finlanda nr.21 sector 1, Bucuresti (RO). (72) Inventor: RADULESCU, Cornel Mircea Valentin; Bld.Constructorilor nr.16 bl.H2 et.1 ap.7 sector 6, Bucuresti (RO). (74) Agent: MIHAELA TEODORESCU & PARTNERS INTELLECTUAL PROPERTY OFFICE SRL; str.Viorele nr.51 bl.37 sc.2 ap.63 sector 4, 040425 Bucuresti (RO). 	(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW KM, ML, MR, NE, SN, TD, TG).

Till Now Column size 50÷100 cm Socket diameter 1500+2050 mm Pile diameter 600÷1000 mm Pile depth $4 \div 12,5$ m Soil type sand to gravel/boulders, soft clay to hard clay, $q_c = 0.15 \div 30$ MPa Design Loads N = 9,000 kN, M = 4,000 kNm, H = 1,000 kN Productivity 5÷10 foundations/rig/day Available Column size up to 120 cm **Capabilities** Socket diameter up to 2500 mm Pile diameter up to 1200 mm Pile depth up to 22 m Soil type sand to gravel/boulders, q_c up to 50MPa Design Loads N = 15,000 kN, M = 8,000 kNm, H = 2,000 kN Productivity up to 12 foundations/rig/day

SAIDEL ENGINEERING