Conferința Internațională SOLUȚII PREFABRICATE DIN BETON

INNOVATION IS OUR CHEMISTRY

Thixotropy Control of Self Compacting Concrete with Dedicated Superplasticizers

November, 7th 2019 Bucharest

Authors: Philippe Ortega, Laurent Bonafous, Lucia Ferrari, Pascal Boustaingorry

Thixotropy of Self Compacting Concrete

Thixotropy evaluation on a grout scale

Thixotropy evaluation on a concrete scale

- In lab conditions
- In industrial conditions

Thixotropy of Self Compacting Concrete

Thixotropy evaluation on a grout scale

Thixotropy evaluation on a concrete scale

In lab conditions

In industrial conditions

Self Compacting Concrete, a concrete with unique flowable properties

... with balanced viscosity

But in some cases, customers report a "wrong behaviour"...

time-dependent reaction

"THIXOTROPY"

Lack of free flow !

5

- "sticky" or "heavy" concrete ;
 - Difficult to quantify with common tools

Thixotropy of Self Compacting Concrete

Thixotropy evaluation on a grout scale

Thixotropy evaluation on a concrete scale

In lab conditions

In industrial conditions

Thixotropy of Self Compacting Concrete

The Bingham rheological modelling

Yield stress: stress to apply in order to make concrete flow
Apparent viscosity: ratio of the stress to the shear rate

Thixotropy of Self Compacting Concrete

At low shear rate, concrete behaves differently...

Thixotropy of Self Compacting Concrete

Thixotropy and its consequences on concrete properties during transient phases (pouring and casting steps) :

- Shape stability (e.g. : shotcrete, slipforming) ;
- Less hydrostatic pressure on formwork ;
- Less risk of static segregation.

...but can affect:

- "self-placing" ability (e.g. long size elements);
- concrete pumping after restart ;
- Interface quality between pouring layers ;
- Surface finish quality.

Thixotropy of Self Compacting Concrete

Thixotropy evaluation on a grout scale

Thixotropy evaluation on a concrete scale

In lab conditions

In industrial conditions

Methodology : inspired by Z. Toutou, N. Roussel, Multi scale experimental study of concrete rheology: from water scale to gravel scale, Materials and Structures. 39 (2006) 167–176.

- rheological characteristics measured by rheometer and
- mostly driven by the cement paste

- Selecting an arbitrary size limit fitting the rheometer (e.g. 0.315 mm)
- Combining materials into a grout simulating the concrete grading curve at 0.315 mm maximum particle size

Test protocol : evaluation of 3 PCP based superplasticizers:

- *SP1 : common superplasticizer*
 - SP2 & SP3 : designed for thixotropy reduction

Composition for 400g dry content (g)				
Cement CEM I 52.5R	196.1			
Limestone filler	89.6			
0/0.160 mm sand	97.8			
0/0.315 mm sand	20.7			
Water	93.6			

Superplasticizer dose adjusted for min-slump flow 105 ± 5 mm

Test apparatus : Kinexus rheometer (Malvern Instruments, UK)

2 ways to evaluate thixotropy:

Gradient applied

- 1 on shear stress : logarithmic decreased increments from 200 to 0,01 s⁻¹;
- 2 **on viscosity** : re-shearing followed by a 4 Pa continuous rotation (to simulate a gravel sedimentation)

Results : 1- evolution of the shear stress

Results : 2- evolution of the viscosity

Thixotropy of Self Compacting Concrete

Thixotropy evaluation on a grout scale

Thixotropy evaluation on a concrete scale

In lab conditionsIn industrial conditions

Thixotropy evaluation on concrete scale: lab trials

)

Test protocol : evaluation on concrete of the 3 PCP based superplasticizers

Composition for 1m ³ dry contents (kg)				
Cement CEM I 52.5R	350			
Limestone filler	160			
0/4 mm sand	642			
4/10 mm crushed gravel	859			
8/16 mm riverbed gravel	114			
Effective water	176			

Thixotropy evaluation on concrete scale: lab trials

• **Test apparatus : CHRYSO® Box**, a new device developed to test concrete rheology at low energy input

- Box separated in two equal parts by a removable gate;
- Both parts on the left side filled simultaneously with concrete after end of mixing, then lifted 2, 6 or 10 minutes later.

- Time to reach the opposite end at each resting time ;
- Height differences between both ends concrete stops flowing.

Thixotropy evaluation on concrete scale: lab conditions

Results:

Thixotropy of Self Compacting Concrete

Thixotropy evaluation on a grout scale

Thixotropy evaluation on a concrete scale

- In lab conditions
- In industrial conditions

Thixotropy evaluation on concrete scale: industrial conditions

Results: evaluation in a prestressed beam precast plant

Cement (kg/m ³)	Water (l/m ³)	Admixture name	Dosage %	Flow (mm)	Rc 14h (MPa)	Rc 16h (MPa)
433	205	SP3	1.00%	680	47.7	51.3
		Current superplasticizer	1.25%	680	41.8	50.1

Thixotropy evaluation on concrete scale: industrial conditions

<image>

Non thixotropic concrete (SP3)

The new superplasticizer brings a faster and better filling of the mould !

Thixotropy of Self Compacting Concrete

Thixotropy evaluation on a grout scale

Thixotropy evaluation on a concrete scale

- In lab conditions
- In industrial conditions

Conclusions

The study of thixotropy at grout and concrete scale allowed:

- The development of a specific tool, easy to use: CHRYSO®Box
- The development of a specific polymer chemistry to reduce thixotropy

Thank you for your attention !